Compositional Process Model Synthesis
Based on Interface Patterns

Roman A. Nesterov®) and Irina A. Lomazova

National Research University Higher School of Economics,
20 Myasnitskaya Ulitsa, 101000 Moscow, Russia
ranesterov@edu.hse.ru, ilomazova@hse.ru

Abstract. Coordination of several distributed system components is an
error-prone task, since interaction of several simple components can gen-
erate rather sophisticated behavior. Verification of such systems is very
difficult or even impossible because of the so-called state space explosion
problem, when the size of the system reachability set grows exponen-
tially on the number of interacting agents. To overcome this problem
several approaches to construct correct models of interacting agents in
a compositional way were proposed in the literature. They define differ-
ent properties and conditions to ensure correct behavior of interacting
agents. Checking these conditions may be in its turn quite a problem.

In this paper we propose patterns for correct composition of compo-
nent models. For justifying these patterns we use special net morphisms.
However, to apply patterns the user does not need to be familiar with
the underlying theory.

Keywords: Petri nets - Distributed systems - Interface patterns
Synchronization + Compositionality + Morphisms

1 Introduction

The development of correct distributed systems meets several hard problems.
One of them is to define correct coordination of various system components
meeting a specification of their interaction. This task is rather complicated and
error-prone, since bad organization of interaction can lead to deadlocks, or violate
proper termination of component behavior.

On the other hand, distributed system models can be too large and compli-
cate for verification with the existing tools. The solution is to develop techniques
for compositional building system models from component models, in the way
which guarantees correctness of system behavior.

Here we study the following problem of defining component interaction: given
two deadlock-free and properly terminating component models and a scheme of

This work is supported by the Basic Research Program at the National Research
University Higher School of Economics and Russian Foundation for Basic Research,
project No. 16-01-00546.

© Springer International Publishing AG 2018

V. Itsykson et al. (Eds.): TMPA 2017, CCIS 779, pp. 151-162, 2018.
https://doi.org/10.1007/978-3-319-71734-0_13



152 R. A. Nesterov and I. A. Lomazova

their interaction we need to construct the deadlock-free and properly terminat-
ing system model. We will compose interacting components by applying special
patterns specifying different ways of interaction. In this paper we define sev-
eral patterns for constructing a correct system model from correct component
models. The correctness of patterns is justified with the help of special net mor-
phisms, defined in [3]. However, to apply the patterns it is not needed to know
the underlying theory.

Thus, our aim is to define compositional patterns for typical interaction
schemes, which can be used by the developer to construct reliable models.

2 Related Work and Motivation

Petri nets [13] is one of the most popular formalisms for modeling and analysis
of distributed systems. We use Petri nets for representing component models as
well as interface scheme. Then component models should be composed into one
Petri net model, which represents the overall system behavior according to the
interface definition.

Petri net composition was extensively studied in the literature. Petri nets
can be composed via transition merging, which corresponds to synchronization
of events, or via place merging corresponding to asynchronous communication
by resource sharing. The general framework of such composition is described
n [13]. Petri net composition by place/transition merging is intuitively clear
and easy to implement. The problem with it is that the resulting system does
not inherit components behavioral properties, since after composing with some
other components the component behavior can be crucially changed. So, after
such composition the model should be verified from scratch.

One of possible ways to achieve inheritance of component behavioral prop-
erties is to use net morphisms [2,14]. Special constructs for composing Petri
net components based on net morphisms were studied in [3-5]. The key idea of
this approach is that distributed system components refine an abstract inter-
face, which describes the interaction between them. The composition based on
morphisms provides support for the modular system development process [1,12].

A rather large number of studies have been devoted to the problem of com-
positional web service synthesis using different classes of Petri nets [6-9,15,16].
These works define and study different kinds of templates for composing services,
but they do not consider the restriction on execution order among services. In
the overview [6] the authors stress that there is a lack in execution engines or
frameworks based on Petri Nets.

In their early work [8] R. Hamadi and B. Benatallah have offered a systematic
algebraic approach to regular composition of services via sequencing, choice,
concurrency etc. (see Fig.1). Applying these operations to proper terminating
component models gives a model, which proper terminates by construction.

The composition operations in [8] ignore inner structure of the composed
components, there is no possibility to specify e.g. the order of inner actions in
two components. This case is schematically represented in Fig. 2. Here the first



Compositional Process Model Synthesis Based on Interface Patterns 153

m
oF

Parallel execution ) Alternative execution

@l@

(c) Sequential execution

O @®

Fig. 1. Templates for composing two web services S1 and S

component includes an inner action A, which occurs in all component executions.
The second component has an inner action B with the same property. The
interaction scheme requires that A should be implemented before B (e.g. B
uses a resource produced by A). Then the problem is to define a pattern for
composing two components via given interface in such a way that the target
model inherits proper termination of both components.

COTHC3
ey OO0

(a) Modeling components (b) Interaction scheme

Fig. 2. Extending templates to relations on inner actions of components

This paper gives a solution to this and two other typical interaction patterns.
We use special net morphisms to justify correctness of the obtained models.

3 Composing Petri Nets via Interface Patterns

We start this section by giving background definitions concerning Petri nets and
their behavior.

Definition 1. A Petri net is a bipartite graph N = (P, T, F,mq, L), where:

P ={p1,p2,p3,-..,pn} — a finite non-empty set of places.

T = {t1,t2,t3, ..., tm} — a finite non-empty set of transitions, PUT = .
FC(PxT)U(T x P) — a flow relation.

mo C P — an initial marking (configuration) of a net N.

L:T — {A}UrT — a labeling for transitions, where T is a name for silent
transitions.

G Co do



154 R. A. Nesterov and I. A. Lomazova

Let t be a transition in a Petri net N. We call a set *t = {p € P|(p,t) € F'}
a preset of t and a set t* = {p € P|(t,p) € F} — a postset of t. Subsequently,
*t® = *tUt® is called a neighborhood of ¢.

The behavior of Petri nets is defined through the firing rule, which specifies
when an action can occur, and how it modifies the overall state of a system.

A marking m C P enables a transition ¢, denoted mlt), if *¢ C m and
t*Nm = @&. The t firing in m leads to m’, denoted m[t)m’, where m’ = m\ *tUt®.
When Vt € T and Yw € T*, m[twym’ = m[t)ym” [w)m’, w is called the firing
sequence. We denote a set of all firing sequences of a net N as F'S(N).

We call a marking m C P reachable if 3w € FS(N) : mo[w)m. A set of all
reachable markings of a net N is [mg). A reachable marking m is dead if it does
not enable any transition. A marking m C P is called final if Vp € m : p®* = @. A
net N is deadlock-free if Vt € T3m € [mg) : m[t) except m is a final marking.
A net N terminates properly if a final marking is reachable.

The challenge of this work is to compose models of separate components into
a single system model preserving crucial properties of the initial models. Our
approach is based on the notion of w-morphisms introduced in [3].

Definition 2. Let N; = (P;,T;, F;,m{) for i = 1,2 be two acyclic Petri nets,
X; = P,UT;. The w-morphism is a total surjective map ¢ : X1 — X5 such that:

1. o(P1) = P2, o(m) = mj.
2. Yty € T, if p(t1) € T, then (°t1) = *@(t1) and w(t1°*) = o(t1)°.
3. Vit € T, if p(t1) € Pa, then o(*t1*) = {¢(t1)}.

Figure 3 explains the requirements 2 and 3 of this definition. To compose two
component nets we need to define morphisms from them towards the abstract
interface (system view) they refine. After morphisms are defined, we merge struc-
tural elements mapped onto the same interface places preserving flow relation of
both components.

o]
O

(a) p(A) = A" €T (b) p(A) =pe P

O

Fig. 3. Transition map options for w-morphisms



Compositional Process Model Synthesis Based on Interface Patterns 155

Another intention of our study is to provide patterns covering generic cases
of distributed process modeling. We construct component nets from abstract
subnets denoted NN;(S;) where N; and S; are a component and a subnet labels
correspondingly. They are also represented in a form of Petri nets. It has to
be noted that we explicitly identify a set of subnet input and output places
such that *p = @ and p®* = . We use single places to represent these sets.
Figure 4 shows how we depict this subnet and how we aim to combine them via
transitions in order to represent a behavior of a system component. Our study
considers deadlock-free and proper terminating subnets.

Fig. 4. An abstract subnet

Prior to composing two Petri nets via w-morphisms we need to obtain so-
called canonical representations of them with respect to an interface net.

Definition 3. Let N; = (P;, T}, F;,m{, L;) be two Petri nets for i = 1,2. A
canonical representation of N1 with respect to Na, denoted N& = (P, T, F,mg, L)
is defined as follows:

1. P= Py UP;, and mg = my Um3.

2. T =Ty UTy, identically labeled transitions are merged correspondingly.

8. F=FUF.

4. L:T— {AU T}, Vt, € Ty : L(tl) = Ll(tl) and ¥ty € T : L(tg) = LQ(tQ).

Afterwards we can compose two canonical representations of component Petri
nets via defining w-morphisms from them to another interface net specifying
requirements for their interaction. Figure 5 explains how to obtain a composition
according to the definition below.

Definition 4. Let N; = (P;,T;, Fi,m{, L;) be Petri nets for i=1, 2, I. Let
NE, NS be canonical representations of N1 and Ny with respect to Ny and
w; : N; = Ny fori=1,2 be two w-morphisms. A Petri net N = (P, T, F,mg, L)
1s called a composition of N1 and Ny via interface Ny and morphisms wy,ws
(denoted N = N1(N1)Nz) iff N is obtained from Ny, No, Ny by merging tran-
sitions with the same labels related by wi and ws, i.e. transitions t and t' are
merged iff L(t) = L(t') and w(t) =t'.

It can be easily seen that there are redundant places in a composition N,
which do not influence its behavior (see Fig. 5(b)). We can reduce a composition
by removing these places with the help of simple reduction rules proposed by
T. Murata [10]. Further when we describe patterns, we provide already reduced
composition of models.



156 R. A. Nesterov and I. A. Lomazova

(a) Morphisms wy and wo (b) N

Fig.5. A composition of two Petri nets via w-morphisms

The composed net is deadlock-free and terminates properly according to the
following proposition based on [4] where the proof based on weak bisimilarity
notion [11] is provided.

Proposition 1. Let N1 and Ny be two Petri nets representing components, and
N be their composition obtained via the interface Petri net Ny and w-morphisms
as described above.

1. The Petri net N is deadlock-free, if N1, No and Ny are deadlock-free.
2. The Petri net N terminates properly, if N1, No and Ny terminates properly.

Finally, while describing patterns we also want to preserve mutual indepen-
dence of components, i.e. a composition must not add any behavioral constraints
that are not provided in the component nets.

However, the original interfaces we propose in problem statements for pat-
terns sometimes are not appropriate for the preservation of mutual independence.
To overcome this problem, we construct an extended interface net which per-
forms the same sequences of observable actions. This equivalence is called string
equivalence in [11]. This extension preserves component independence.

3.1 Pattern 1: Simple Causality

In this subsection we implement the composition in accordance with the simple
causality pattern (see Fig.2) and provide all explanatory details. The causality
can mean, for instance, that in a composed net the first component while exe-
cuting A produces the necessary resources for the correct implementation of B
by the second component.



Compositional Process Model Synthesis Based on Interface Patterns 157

(a) Morphisms w1, w2 (b) The composition

Fig. 7. The composition for the simple causality pattern via w-morphisms

Firstly, we adjust the original interface net to preserve the mutual inde-
pendence of the components by constructing a Petri net shown in Fig.6(b).
Figure6(a) and (c) show the canonical representations of component nets with
respect to the interface. Afterwards, we define w-morphisms from the component
nets towards the interface (see dotted arrows in Fig. 7(a)) and obtain composi-
tion shown in Fig. 7(b) after some simple reductions.

3.2 Pattern 2: Extended Causality

In this section we generalize the simple causality pattern by adding concurrent
branches in component models. In this case both component models look as



158 R. A. Nesterov and I. A. Lomazova

shown in Fig. 8. The interface here is identical to the interface we used for simple
causality pattern (see Fig.2). The extended version of the original interface is
shown in Fig. 9.

Fig. 8. The component net with concurrent branches

Then we define w-morphisms and compose source component models. The
reduced result is shown in Fig. 10. It can be easily seen, that we have got this
net by connecting transitions A and B via additional control place similar to
the case of the simple causality pattern.

Fig. 9. The interface net for the extended causality

Morphisms help us find which transitions should be connected and and how
to organize this connection. As a result, we obtain a correct (deadlock-free and
proper terminating) composition by construction.

3.3 Pattern 3: Conditional Causality

Conditional causality is another generalization of the simple causality pattern
by adding choice construct in one of the two interacting components. Figure 11
shows the problem statement for composing two components following this pat-
tern. The main feature of the conditional causality is that we choose between
two sequences of actions having one action in common that is always executed
when these components interact.



Compositional Process Model Synthesis Based on Interface Patterns 159

Fig. 10. The composition for the extended causality pattern via w-morphisms

(a) Component models (b) Interface

Fig. 11. The components and the interface for the conditional causality pattern

The interface shown in Fig. 11(b) cannot be directly used for defining mor-
phisms. Two copies of the same action C in the interface net do not allow to
define surjective maps. To overcome this problem we construct an interface net
with a single copy of the action C as shown in Fig. 12. The idea behind this con-
struction is quite straightforward: we need to remember what option we choose
to execute (A-C or C-B) and that C-B sequence fires if A does not fire.

After defining w-morphisms, composing nets, and making some reductions
we get the Petri net the composition result for the conditional causality pattern



160 R. A. Nesterov and I. A. Lomazova

Fig. 12. The interface net for the conditional causality

Fig. 13. The composition for the conditional causality pattern via w-morphisms

is shown in Fig. 13. Apart from meeting the requirements imposed by the origi-
nal interface net (see Fig.11(b)), we get the composition with clearly identified
components.



Compositional Process Model Synthesis Based on Interface Patterns 161

4 Conclusion

In this paper we have proposed an approach for constructing models of distrib-
uted systems in a compositional way. The key idea is to automatically obtain
the correct and complete process models from the separate source models of its
components.

The proposed approach allows us to compose Petri net models respecting
some relations on inner actions of the components.

We have constructed three patterns for the composition of two interacting
components. The suggested templates can be used for manual or automatic syn-
thesis of models. The composed model is deadlock-free and terminates properly,
provided all components satisfy these properties. It also clearly represents com-
ponent models as parts of the target model.

The future research will be focused on developing patterns for other relations
including such patterns as the exclusive choice and on combining several patterns
together and defining patterns for more than two components.

References

1. Bednarczyk, M.A., Bernardinello, L., Caillaud, B., Pawlowski, W., Pomello, L.:
Modular system development with pullbacks. In: van der Aalst, W.M.P., Best, E.
(eds.) ICATPN 2003. LNCS, vol. 2679, pp. 140-160. Springer, Heidelberg (2003).
https://doi.org/10.1007/3-540-44919-1_12

2. Bednarczyk, M.A., Borzyszkowski, A.M.: General morphisms of petri nets
(Extended Abstract). In: Wiedermann, J., van Emde Boas, P., Nielsen, M. (eds.)
ICALP 1999. LNCS, vol. 1644, pp. 190-199. Springer, Heidelberg (1999). https://
doi.org/10.1007/3-540-48523-6_16

3. Bernardinello, L., Mangioni, E., Pomello, L.: Local state refinement and composi-
tion of elementary net systems: an approach based on morphisms. In: Koutny, M.,
Aalst, W.M.P., Yakovlev, A. (eds.) Transactions on Petri Nets and Other Models
of Concurrency VIII. LNCS, vol. 8100, pp. 48-70. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-40465-8_3

4. Bernardinello, L., Monticelli, E., Pomello, L.: On preserving structural and behav-
ioural properties by composing net systems on interfaces. Fundamenta Informaticae
80(1-3), 31-47 (2007)

5. Bernardinello, L., Pomello, L., Scaccabarozzi, S.: Morphisms on marked graphs.
In: Moldt, D., Rlke, H. (eds.) International Workshop on Petri Nets and Software
Engineering (PNSE 2014). CEUR Workshop Proceedings, No. 1160, pp. 113-127.
CEUR-WS.org (2014)

6. Cardinale, Y., El Haddad, J., Manouvrier, M., Rukoz, M.: Web service composition
based on petri nets: review and contribution. In: Lacroix, Z., Ruckhaus, E., Vidal,
M.-E. (eds.) RED 2012. LNCS, vol. 8194, pp. 83-122. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-642-45263-5_5

7. Feng, X.-N., Liu, Q., Wang, Z.: A web service composition modeling and evaluation
method used petri net. In: Shen, H.T., Li, J., Li, M., Ni, J., Wang, W. (eds.) APWeb
2006. LNCS, vol. 3842, pp. 905-911. Springer, Heidelberg (2006). https://doi.org/
10.1007/11610496-125


https://doi.org/10.1007/3-540-44919-1_12
https://doi.org/10.1007/3-540-48523-6_16
https://doi.org/10.1007/3-540-48523-6_16
https://doi.org/10.1007/978-3-642-40465-8_3
https://doi.org/10.1007/978-3-642-45263-5_5
https://doi.org/10.1007/11610496_125
https://doi.org/10.1007/11610496_125

162

10.

11.

12.

13.

14.

15.

16.

R. A. Nesterov and I. A. Lomazova

Hamadi, R., Benatallah, B.: A petri net-based model for web service composition.
In: Proceedings of the 14th Australasian Database Conference, vol. 17, pp. 191—
200. Australian Computer Society, Inc. (2003)

Lomazova, I.A.: Interacting workflow nets for workflow process re-engineering. Fun-
damenta Informaticae 101(1-2), 59-70 (2010)

Murata, T.: Petri nets: Properties, analysis and applications. Proc. IEEE 77(4),
541-580 (1989)

Pomello, L., Rozenberg, G., Simone, C.: A survey of equivalence notions for net
based systems. In: Rozenberg, G. (ed.) Advances in Petri Nets 1992. LNCS,
vol. 609, pp. 410-472. Springer, Heidelberg (1992). https://doi.org/10.1007/
3-540-55610-9-180

Pomello, L., Bernardinello, L.: Formal tools for modular system development.
In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 77-96.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-27793-4_5

Reisig, W.: Understanding Petri Nets: Modeling Techniques, Analysis Methods,
Case Studies. Springer Publishing Company, Incorporated (2013)

Winskel, G.: Petri nets, morphisms and compositionality. In: Rozenberg, G. (ed.)
APN 1985. LNCS, vol. 222, pp. 453-477. Springer, Heidelberg (1986). https://doi.
org/10.1007/BFb0016226

Xu, K., Ma, B.: A petri net based execution engine for web service composition. In:
Huang, Z., Liu, C., He, J., Huang, G. (eds.) WISE 2013. LNCS, vol. 8182, pp. 181—
193. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54370-8_16
Zhang, Z.1., Hong, F., Xiao, H.j.: A colored petri net-based model for web service
composition. J. Shanghai Univ.(Engl. Edition) 12(4), 323-329 (2008)


https://doi.org/10.1007/3-540-55610-9_180
https://doi.org/10.1007/3-540-55610-9_180
https://doi.org/10.1007/978-3-540-27793-4_5
https://doi.org/10.1007/BFb0016226
https://doi.org/10.1007/BFb0016226
https://doi.org/10.1007/978-3-642-54370-8_16

	Compositional Process Model Synthesis Based on Interface Patterns
	1 Introduction
	2 Related Work and Motivation
	3 Composing Petri Nets via Interface Patterns
	3.1 Pattern 1: Simple Causality
	3.2 Pattern 2: Extended Causality
	3.3 Pattern 3: Conditional Causality

	4 Conclusion
	References




